An embedding theorem for commutative $B_{0}$-algebras
نویسندگان
چکیده
منابع مشابه
Tracial Algebras and an Embedding Theorem
We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct...
متن کاملSerre-Swan theorem for non-commutative C∗-algebras. Revised edition
We generalize the Serre-Swan theorem to non-commutative C∗algebras. For a Hilbert C∗-module X over a C∗-algebra A, we introduce a hermitian vector bundle EX associated to X . We show that there is a linear subspace ΓX of the space of all holomorphic sections of EX and a flat connection D on EX with the following properties: (i) ΓX is a Hilbert A-module with the action of A defined by D, (ii) th...
متن کاملNon-commutative Gröbner Bases for Commutative Algebras
An ideal I in the free associative algebra k〈X1, . . . ,Xn〉 over a field k is shown to have a finite Gröbner basis if the algebra defined by I is commutative; in characteristic 0 and generic coordinates the Gröbner basis may even be constructed by lifting a commutative Gröbner basis and adding commutators.
متن کاملCommutative pseudo BE-algebras
The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1972
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-41-2-163-168